Искусство анализа и наука убеждения

Искусство анализа и наука убеждения

|11 апреля 2019|Скотт Беринато

Обработка данных стремительно развивается. За последние пять лет компании потратили миллиарды долларов, чтобы создать команды из лучших айтишников и, набрав зеттабайты данных и прогнав их через умные алгоритмы, выловить значимые сигналы среди шумов. И кое-где это приносит плоды: данные начинают менять наш мир в таких непохожих сферах, как перевод текста, розничные продажи, здравоохранение и баскетбол.

Истории успеха есть, но компаний, которые до сих пор не получают от своей аналитики больших выгод, тоже немало. Четкие и выверенные подходы к обработке информации не гарантируют практической пользы от всего процесса: он дает сбой на последнем этапе, когда приходит время объяснить выводы аналитиков людям, принимающим решения.

ИДЕЯ КОРОТКО

Проблема
Бум в аналитике побудил многие компании нанять специалистов по обработке данных, но это не принесло ожидаемых выгод.
 
Основная причина
Чтобы аналитика принесла выгоду, сначала надо правильно поставить вопросы, затем, тщательно изучив релевантные данные, получить на них ответы. И наконец, выявив их смысл для компании, донести его до стейкхолдеров. Умение делать все это редко встретишь у одного человека: большинство технарей способны анализировать, но не рассказывать о результатах.
 
Решение
Успешная команда аналитиков должна уметь делать шесть вещей: управлять проектами, готовить данные, анализировать их, разбираться в сфере их применения, оформлять результаты наглядно и излагать в виде связных историй. Только такое сочетание обеспечит должную отдачу от корпоративной аналитики.

На анкету, выложенную на платформе по анализу данных Kaggle в 2017 году, откликнулось более 7 тыс. аналитиков. Выяснилось, что из семи основных барьеров, с которыми они сталкиваются по работе, четыре носят организационный характер: «недостаток управленческой/ финансовой поддержки», «отсутствие четко поставленных вопросов, на которые нужно найти ответ», «отказ руководства использовать полученные результаты», «непонимание людьми сути аналитики». Эти результаты совпадают с теми, что привел в своем подкасте специалист по данным Хьюго Баун-Андерсон, опросивший

35 ведущих аналитиков. В статье на HBR.org в 2018 году он писал: «Подавляющее большинство моих гостей рассказали, что главное, что должен уметь аналитик, — это учиться на лету и много общаться: без этого не ответить на вопросы бизнесменов и не объяснить сложные результаты неспециалистам».

Общаясь с аналитиками и руководителями фирм на моих лекциях и консультациях по визуализации и презентации данных, я часто слышу нотки разочарования. Специалисты по данным сетуют, что накопали немало ценной информации, но ею никто не пользуется: топ­менеджеры попросту не понимают, как все это работает, либо смотрят на данные как на панацею, способную дать ответ на любой вопрос. Управленцы-коммерсанты жалуются, что обильные инвестиции в аналитику не приносят отдачи. На самом деле результаты есть — просто их никто не перевел на понятный руководству язык.

Люди бизнеса и технари всегда плохо понимали друг друга, но в нашу эпоху пропасть стала еще глубже. 105 лет назад инженер Виллард Бринтон начал свою главную книгу «Графическое изображение фактов» с описания знакомой нам проблемы: «Сплошь и рядом какой-нибудь член комитета или совета директоров по незнанию дела или вследствие своего самомнения отвергает тщательно продуманный план знающего человека только потому, что его автор не сумел представить собранные им факты настолько убедительно, чтобы опровергнуть возражения <…> Для факта его интересная подача — это то же самое, что для фундамента — воздвигнутый на нем храм».

Почему же мы сто лет не можем преодолеть разрыв? Как и у каждой глубинной проблемы, у него сразу несколько причин. Во-первых, бытует представление, что тот, кто данные обработал, тот и должен их презентовать. Оно связано с тем, что в пакеты программ для анализа данных включены и инструменты их визуализации. Но на самом деле в таких пакетах модули анализа весьма изощренные, а вот «картинки», наоборот, примитивные. Стандартные средства не идут в сравнение с продуманной, качественной инфографикой — разработчики пакетов и не ставят себе такой цели. Многие специалисты по работе с данными прямо говорили мне, что терпеть не могут визуализацию с ее неизбежными упрощениями и огрублениями, из-за которых топ-менеджеры делают выводы без учета нюансов, свойственных научной картине. Сейчас организации гоняются за специалистами по данным, нанимать высоколобых технарей стало модно, и никто не думает о том, захотят ли и смогут ли они делиться своими выводами с неподготовленной аудиторией.

Все было бы ничего, если бы в пару к ним нанимали переводчиков с технического языка на деловой, но никто об этом не думает. Руководители компаний до сих пор ожидают, что одни и те же люди будут и готовить данные, и анализировать их с точки зрения нужд и стратегий бизнеса, и делать красивые графики, и представлять их неспециалистам. Но такого не бывает.

Чтобы начать исправлять ситуацию, нужно перестать искать суперменов и изменить взгляд на состав аналитического отдела. В статье предлагается решение для тех, кто не получает выгод от работы аналитиков. Я рекомендую добавить в команду новых специалистов. Переукомплектованный аналитический отдел станет кросс-дисциплинарным: носители разных умений могут работать в тесной связке и каждый станет понимать, чем занимаются другие. Работу будут не передавать от одной группы к другой, а делать ее вместе.

Командный подход (не новый, но по-новому примененный) поможет аналитическому отделу преодолеть бездну между технарями и бизнесменами и создаст новую ценность в организации.

ИСПОРЧЕННЫЙ ТЕЛЕФОН

Мой опыт показывает, что большинство руководителей признают потенциальную пользу аналитики, но лишь малая часть довольна ею на практике. Специалисты по обработке данных жалуются, что боссы не понимают сути их работы и недостаточно используют их умения. А менеджеры утверждают, что «высоколобые компьютерщики» не в состоянии объяснить свои выводы дилетантам.
 
Чаще всего жалобы, которые я слышу, укладываются в один из трех сценариев. Наверняка они покажутся вам знакомыми.
 
Проклятье науки
Профессионал воспользовался новейшими алгоритмами и лучшими данными, получил массу полезных сведений и подробно изложил их руководству. Он уверен, что его результаты объективны и неопровержимы, и демонстрирует изумленным зрителям десятки сложных графиков с минимумом пояснений, чтобы не тратить время на украшательства. Он блестяще оперирует научными терминами, но слушатели ничего не понимают и дезориентированы. Анализ был проведен безупречно, но никак не повлиял на работу компании.
 
Босс и подчиненные
Влиятельный человек хочет продвинуть важный для себя проект, но не располагает данными для подтверждения гипотезы. Он поручает подготовить аналитику и графики для презентации. Специалисты видят, что гипотеза неверно сформулирована, и дают рекомендации по ее улучшению, но боссу не до мелочей: он требует красивых картинок и тезисов для выступления. У этой ситуации могут быть два исхода: либо кто-то попросит уточнить данные, босс не сможет их пояснить и опозорится — либо проект будет принят и провалится из-за неверной гипотезы.
 
Удобная версия
Талантливый специалист по инфографике, вдохновленный интересной аналитикой, создает для совета директоров красивую презентацию с фирменной айдентикой и убедительными историями. Но обработчики данных разочарованы: топ-менеджеры начинают толковать их анализ некорректно. Понятные и простые диаграммы создают иллюзию существования причинно-следственных связей, которых может и не быть, и снимают свойственный любому анализу элемент не­определенности. Обработчики в замешательстве: с одной стороны, их работу наконец-то признали, но с другой — ее представили и поняли упрощенно и неточно.

Почему все не так?

В ХХ веке пионеры современного менеджмента овладели продвинутыми методами превращения данных в графики и диаграммы, на основе которых можно принимать решения. Для этого они вели проекты с перфокартами, сортировкой данных, рисовальщиками и управленцами. В книге Бринтона приведена масса примеров результатов такой работы. Дальше всех продвинулись железнодорожные и крупные промышленные компании: они находили эффективные логистические схемы, обеспечивали выполнение плана продаж и даже оптимизировали графики отпусков. Командный подход процветал до конца XX века. Мэри Элеанор Спир в книге 1969 года «Practical Charting Techniques» описывает обязанности идеальной команды и ее состав: коммуникатор, график-­аналитик и рисовальщик. «Желательно, — подчеркивает Спир, — чтобы все трое работали сообща».

Однако в 1970-х ситуация начала меняться. Ученые перешли на новые технологии, позволявшие визуализировать данные там же (на компьютере), где велась их обработка. Представление было несовершенным, но получалось быстро и не требовало внешней поддержки. Компьютерная визуализация стала наступать на традиционную инфографику, которую рисовали вручную.

Окончательный разлом произошел с появлением в Excel от Microsoft функции Chart Wizard: теперь визуализация стала доступна каждому. Любой сотрудник мог мгновенно построить диаграмму и даже добавить ей выразительности: сделать столбцы трехмерными или превратить унылую круговую диаграмму в изящный бублик. Значимость этого сдвига трудно переоценить: компании начали общаться на языке инфографики. Данные стали использовать все чаще, и это вызвало мощное развитие аналитики: она обещала превратить в наглядную картинку объемы данных, неподвластные дизайнеру-­человеку. Все это, прежде всего, изменило саму структуру работы. Специалисты по инфографике (бывшие рисовальщики) оказались ненужными и постепенно ушли из сферы аналитики. Визуализация стала обязанностью тех, кто работал с данными, но в большинстве своем они никогда ей не учились, да и не считали это необходимым. Вставить график из Chart Wizard в презентацию было намного быстрее и удобнее, чем тратить время и ресурсы на рисование картинок. Про инфографику забыли, хотя она и была более наглядной.

Обязанностей у тех, кто занимается аналитикой, все прибавлялось (в нее вошли программирование, статистический анализ и алгоритмическое моделирование), но окружающие продолжали считать, что эти же люди должны отвечать и за представление результатов.

В программной статье «Специалист по данным: самая востребованная профессия XXI века» (Томас Дейвенпорт и Д. Дж. Пэтил, «HBR Россия», ноябрь 2012 года) эта роль описана в совершенно суперменских эпитетах: «Что это за люди? Какие таланты нужны им? Считайте, что это — хакер, аналитик, штатный “умник” и консультант в одном лице. Очень мощный коктейль — и очень редкий».

Но, если самая востребованная профессия требует очень редкого сочетания умений, многие организации просто не смогут нанять нужного специалиста. Значит, проблему надо решать по-другому. Правильнее всего будет изменить подход к комбинации умений, требуемых от аналитиков, посмотреть, каких им недостает, и добавить в команду людей, которые ими обладают.

ИЗУЧИТЕ ВОЗМОЖНОСТИ СОТРУДНИКОВ…

Чтобы лучше планировать проекты и подбирать команды, менеджерам стоит провести аудит талантов. Прежде всего, определите, какие умения вам нужны…

Затем установите, кто что умеет, и оцените глубину проникновения каждого умения в коллективе.

…И ИЗВЛЕКИТЕ ИЗ НИХ ПОЛЬЗУ

Поняв, какие умения находятся в его распоряжении, менеджер может правильно распределить их по проектам. Скорее всего, на разных стадиях проекта пригодятся разные умения, и только проект-менеджмент будет актуален на всем его протяжении.

Как связать аналитику с жизнью

Полезный для бизнеса коллектив аналитики должен следовать заповедям Бринтона и Спир, но в современных условиях, то есть с учетом взрывного роста объемов данных, автоматизации систем и развития приемов визуализации. И конечно, нынешние проекты очень разнообразны: от сравнительно простого отчета (например, финансового) до сложнейших выкладок с большими данными и новейшими самообучающимися алгоритмами. Итак, вот четыре шага к построению такого отдела.

1.

Определитесь с нужными умениями (но не должностями). Кажется логичным, что отказ от идеи супермена — мастера на все руки — повлечет найм разных людей на разные роли: обработчика данных, аналитика, дизайнера и коммуникатора.

Не совсем так. Лучше мыслить не ролями, а необходимыми умениями. У одного сотрудника их может быть несколько: скажем, три участника команды закрывают пять умений. Это важно обеспечить, чтобы команды можно было гибко переконфигурировать на разных стадиях проекта (об этом ниже). Список умений, нужных конкретной компании, будет меняться, но базовый набор обычно включает шесть описанных ниже.

Управление проектами. Поскольку ваша команда должна уметь адаптироваться под тип и этап проекта, ей понадобится сильный руководитель со знанием методологий наподобие скрама. У подходящего менеджера должны быть отличные навыки организатора и дипломата: ему предстоит сплачивать очень непохожих специалистов и помогать им говорить на одном языке.

Подготовка данных. Компетенции, составляющие это умение, включают в себя построение систем, поиск, очистку и структурирование данных, а также создание и поддержку алгоритмов и других статистических инструментов. Люди с талантом к подготовке данных будут постоянно искать способы оптимизации работы — например, путем разработки процессов, подходящих для проектов разного вида, и шаблонов для надежного и предсказуемого визуального результата (на их основе будет строиться инфографика).

Анализ данных. Важнейшая способность формулировать и проверять гипотезы, находить смысл данных в контексте конкретного бизнеса на удивление мало представлена в реальных аналитических отделах.

Полная версия статьи доступна подписчикам
Выберите срок онлайн-подписки:

https://hbr-russia.ru/innovatsii/tekhnologii/797103

2019-04-11T08:57:58.000+03:00

Thu, 11 Apr 2019 06:01:17 GMT

Искусство анализа и наука убеждения

Организации накопили массу информации, но не могут объяснить, что она означает

Инновации / Технологии

https://cdn.hbr-russia.ru/image/2019/29/upegk/original-13sl.jpg

Harvard Business Review – РоссияHarvard Business Review – Россия

Harvard Business Review – РоссияHarvard Business Review – Россия