Умная платформа

Умная платформа
|24 июня 2019| Андрей Скобеев Данис Маганов Владимир Рогов Антон Аристов Леонид Жуков

В управлении производственным процессом программы машинного обучения пока редки, хотя именно такие системы сулят наибольшую выгоду. Искусственный интеллект уменьшает влияние человеческого фактора и нагрузку на операторов, позволяя аккумулировать, стандартизировать и распространять накопленный опыт управления комплексом оборудования. В нефтедобывающей компании ЛУКОЙЛ установили программу, которая позволяет уменьшить простои и оптимизировать режим техобслуживания и работы дорогостоящего оборудования на нефтяной платформе.

Сейчас мало кого надо убеждать в том, что искусственный интеллект (ИИ) способен выводить компании на новый уровень эффективности.

В опросе, проведенном в конце 2017 года Школой бизнеса Слоуна и BCG в 112 странах и охватившем более 3 тыс. руководителей компаний из 21 отрасли, три четверти респондентов признавали, что ИИ — мощный инструмент создания конкурентного преимущества. Однако при всей поддержке и понимании руководства собственная система ИИ, пусть даже совсем скромная, была лишь у каждой пятой компании. А если взять отдельно крупнейшие бизнесы (с численностью сотрудников более 100 тыс.), то на этот момент исследования стратегия развития ИИ была у половины, но опыт внедрения — лишь у каждой четвертой.

Сейчас, спустя полтора года, ситуация изменилась мало: если у крупных компаний и есть проекты с ИИ, то чаще всего они обслуживают какой-либо модуль в одной из вспомогательных функций. К управлению основным производственным процессом ИИ подключают гораздо реже, хотя именно здесь внедрение сулит наибольшую выгоду.

Основных причин отставания в «интеллектуализации» операционной деятельности три. Во-первых, выбирая сферы для внедрения ИИ, компании предпочитают относительно малорисковые: инвестируют в проекты не слишком большого масштаба, которые в случае неудачи не лягут тяжким бременем на бюджет. Во-вторых, для непроизводственных функций, таких как HR, существуют готовые «коробочные» ИИ-решения, а для производственной системы все приходится делать заново «под себя», привлекая сторонние компании. Дело усугубляется еще и тем, что разработанные и уже внедренные производственные ИИ-решения требуют регулярной калибровки, а нередко и дообучения моделей. Чтобы справиться с этой задачей, приходится создавать внутренние подразделения аналитики больших данных (отделы data science). Не все компании хотят и могут это осуществить.

В статье мы расскажем о том, как крупнейшая частная нефтяная компания России ЛУКОЙЛ решила встроить искусственный интеллект в управление нефтяной платформой, какие ресурсы для этого понадобились и какие результаты были достигнуты за первые полтора года работы.

Полная версия статьи доступна подписчикам
Выберите срок онлайн-подписки:

https://hbr-russia.ru/innovatsii/tekhnologii/803089

2019-06-24T00:08:16.000+03:00

Mon, 24 Jun 2019 17:18:59 GMT

Умная платформа

Как компания ЛУКОЙЛ оптимизирует нефтедобычу с помощью машинного обучения

Инновации / Технологии

https://cdn.hbr-russia.ru/image/2019/49/4mqe8/original-604.jpg

Harvard Business Review РоссияHarvard Business Review Россия

Читать полностью

Harvard Business Review РоссияHarvard Business Review Россия