Как победить безграмотность в вопросе данных | Harvard Business Review Russia
Тренды

Как победить безграмотность в вопросе данных

Джош Берсин , Марк Зао-Сандерс
Как победить безграмотность в вопросе данных
Phil Ashley/Getty Images

В каждой отрасли компании аккумулируют огромные объемы данных. Ритейлеры пристально изучают нашу историю покупок, авиакомпании измеряют, какие факторы влияют на соблюдение графика рейса, отслеживается практически каждый звонок в службу поддержки, электронное письмо и любая активность клиента. Какую пользу несут все эти данные? Они позволяют выяснить, как лучше удовлетворять потребности клиентов, усовершенствовать свои услуги и операции, а также принимать более правильные решения при кадровом отборе.

Мы вступили в золотую эру данных. Не нужно быть Walmart или IBM, чтобы создать озеро данных в своей компании. Благодаря облачным системам это может позволить себе любая компания, и за небольшие деньги.

Но несмотря на все эти данные и огромную, беспрецедентную роль, которую они сегодня играют, одна серьезная проблема все же остается: большинство из нас не умеют интерпретировать данные и не умеют ими пользоваться. Несколько лет назад Национальный центр статистики образования США (NCES) оценил навыки взрослого населения в интерпретации данных и решении задач и обнаружил, что из 23 стран-участниц США занимают 21-е место. Огромный процент трудоспособного населения должен повысить свою грамотность в работе с данными.

Кто несет ответственность за повышение навыков грамотности в интерпретации данных?

Школы и колледжи часто недостаточно квалифицированы для решения проблемы грамотности в интерпретации данных. Математические программы отдают приоритет критически важным основным дисциплинам (математический анализ и алгебра), а не более прикладным предметам, таким как статистика и теория вероятностей. Кампании, агитирующие за больший прагматизм в образовании, — как и эта статья 20-летней давности — остаются в основном без внимания.

Сегодня ответственность перешла от образовательных учреждений к работодателям, где программы развития навыков процветают. В таких компаниях, как Bloomberg, Guardian Insurance и Adobe, теперь есть академии обработки данных и цифровые академии, цель которых — помочь сотрудникам во всех дисциплинах научиться анализировать данные.

Другим работодателям тоже нужно всерьез заняться этой задачей.

Новый взгляд на навыки работы с данными

За последние пять-десять лет нужные нам навыки работы с данными изменились. На заре науки о данных компаниям требовались компетенции в области работы с SQL, умение извлекать данные, нормализовать информацию и владение такими технологиями, как параллельная обработка, анализ больших данных и язык программирования R.

Сегодня, как показывают исследования IBM, многие из этих технологий встроены в платформы обработки данных, поэтому компании интересуют другие навыки. Мало того, что в бизнесе необходимо понимать природу этих систем данных и принципы их работы, нужно также разбираться в том, как настроить надежное управление данными, обеспечить конфиденциальность, безопасность и доверие. По мере того как ИИ становится все более важной составляющей бизнеса, современным специалистам все чаще нужно уметь проверять результаты работы алгоритмов, а не просто исходить из того, что решения системы всегда верны.

Например, недавно мы провели опрос фокус-группы из представителей 20 передовых компаний и выяснили, каких навыков работы с данными не хватает в их организациях. Команды аналитиков рассказали, что в технических компетенциях недостатка нет, другое дело — решение задач на основе данных. Они особо отметили, что многим не хватает навыков для того, чтобы:

  • задавать правильные вопросы

  • понимать, какие данные релевантны и как проверить достоверность имеющихся данных

  • хорошо интерпретировать данные, чтобы результаты были полезными и значимыми

  • проверять гипотезы с помощью A/B-тестов, чтобы увидеть, каковы будут результаты

  • создавать простые для понимания визуализации, чтобы руководители понимали результаты

  • излагать суть, чтобы помочь принимающим решения увидеть общую картину и действовать на основе результатов анализа.

Конечно, нам нужны основополагающие продвинутые навыки работы с данными, но наше исследование показало, что решающее значение имеют связанные с ними соответствующие мягкие навыки.

Цена непонимания контекста данных огромна. Команда аналитиков одного глобального ритейлера обнаружила колоссальные различия в объеме продаж и текучести кадров в своих магазинах. Они оценили корреляцию доходов с различными показателями и пришли к выводу, что торговые точки с большей специализацией рабочих задач и ориентированными на результат командами продаж значительно превосходят по показателям другие магазины. Также в таких компаниях сотрудники более довольны своей работой, текучесть кадров ниже. Команда (которая провела за анализом данных все лето) представила результаты — руководители были впечатлены: есть над чем задуматься. А потом один из присутствовавших спросил: к какому времени года применялся анализ? Оказывается, в рознице активно привлекается временный персонал, и текучесть кадров в этой организации в летний сезон всегда в три раза выше. Этот контекст не был учтен, что сделало первоначальную итерацию анализа в сущности бессмысленной.

В конечном счете результаты получились значимыми, и команда снова приступила к работе и узнала много нового о своем бизнесе. Но базовые навыки консультирования, понимания контекста и четкого определения данных отсутствовали.

Практические решения для расширения компетенций в работе с данными

Навыки работы с данными сейчас важны практически для любой позиции в любой организации. Но поскольку мало в каких компаниях эти компетенции на должном уровне освоены, трудно понять, с чего начать их развитие. Мы призываем сосредоточиться на основах.

Полная версия статьи доступна подписчикам
Вы уже подписаны?
Тогда авторизуйтесь
советуем прочитать
Где найти триллион
Майкл Чуи,  Мехди Миремади,  Николаус Хенке
Дело привычки
Анна Натитник