Вопрос на триллион: на что способны квантовые компьютеры | Harvard Business Review Russia
Тренды

Вопрос на триллион: на что способны квантовые компьютеры

Ави Голдфарб , Роджер Мелко , Франческо Бова
Вопрос на триллион: на что способны квантовые компьютеры
Иллюстрация: oxygen/Getty Images

Квантовые технологии приобретают все большую популярность. В Goldman Sachs недавно объявили, что могут внедрить квантовые алгоритмы для оценки стоимости финансовых инструментов уже через пять лет. В Honeywell ожидают, что в ближайшие несколько десятилетий объем квантовой индустрии достигнет триллиона долларов. Но зачем все это нужно корпорациям, особенно если учесть, что до появления коммерческих квантовых компьютеров, возможно, пройдет еще не один год?

Чтобы ответить на этот вопрос, нужно разобраться, что именно умеют такие компьютеры.

Сначала поговорим о цифровых технологиях, которые доступны уже сейчас. Обычный компьютер — это, в первую очередь, арифметическая машина. Компьютеры удешевили арифметические вычисления и очень сильно повлияли на общество. По мере развития технологий и программирования появилось множество способов применять компьютеры для разных продуктов и услуг. Определенные разновидности компьютеров работают в современных автомобилях, посудомойках и бойлерах — не говоря уже о смартфонах и интернете. Наконец, без компьютеров мы бы не попали на Луну и не запустили бы спутники.

Компьютеры работают на двоичном коде (те самые единицы и нули), объем которого измеряется в битах или байтах. Чем сложнее этот код, тем больше для него требуется вычислительной мощности и тем дольше занимают вычисления. Поэтому, хотя компьютеры уже научились решать самые разнообразные задачи — от управления автомобилями до игры в шахматы на гроссмейстерском уровне, — все же остаются кое-какие проблемы, с которыми не могут справиться даже распределенные сети из миллионов компьютеров.

Одна из разновидностей таких проблем — это комбинаторика, то есть поиск оптимальной комбинации элементов для определенной цели. По мере того, как число элементов растет, число возможных комбинаций увеличивается по экспоненте. Чтобы найти лучшее решение, современные компьютеры должны просчитать каждый вариант, а затем выбрать, какой из них наиболее всего подходит для цели. Зачастую это требует очень долгих подсчетов (как, например, в случае подбора паролей). Как мы скоро увидим, проблема комбинаторики затрагивает множество сфер — от финансов до фармацевтики. Кроме того, это одно из главных узких мест, ограничивающих развитие искусственного интеллекта.

Здесь могут помочь квантовые компьютеры. Как обычные компьютеры сократили стоимость арифметических вычислений, так и квантовые могут сократить стоимость вычислений комбинаторных.

Польза квантовых компьютеров

Квантовые компьютеры (и программы для них) основаны на совершенно другой модели мира. В классической физике состояния объекта четко определены. В мире квантовой механики определить состояние квантового объекта может только наблюдение. До этого момента состояния объектов и взаимосвязи между ними интерпретируются только вероятностно. С точки зрения вычислений, это значит, что данные записываются и хранятся иначе — не в виде двоичных битов и байтов, а в виде так называемых кубитов, которые отражают все многообразие возможных квантовых состояний. Это позволяет ускорить и удешевить комбинаторные расчеты.

Может показаться, что все это слишком сложно, и это так. Даже специалисты в области физики элементарных частиц с трудом понимают квантовую механику и удивительные свойства мира субатомных частиц, и эта статья не претендует на то, чтобы их объяснить. Но квантовая механика лучше поясняет многие аспекты нашего мира, чем классическая физика, и с ней согласуются почти все теории последней.

С точки зрения бизнеса, «квантовые компьютеры» — это устройства и программы, которые могут делать все то же самое, что и обычные компьютеры, а также еще одну важную вещь — быстрые комбинаторные вычисления. Как мы описываем в нашей работе «Коммерческие применения квантовых вычислений», это сыграет ключевую роль во многих важных отраслях. В некоторых случаях заранее известно, что комбинаторика играет в сфере ключевую роль.

  • Химическая и биологическая инженерия. Одна из важнейших задач химической и биологической инженерии — это поиск молекул и работа с ними, а для этого, в свою очередь, нужно учитывать движение и взаимодействие субатомных частиц — или, иными словами, квантовую механику. Симуляция квантовой механики была главной проблемой, ради которой Ричард Фейнман когда-то предложил построить квантовый компьютер. Чем сложнее становятся молекулы, тем больше становится возможных комбинаций, и вычисления становятся комбинаторными, то есть идеально подходящими для квантовых компьютеров. Они уже показали, что могут успешно рассчитывать простые химические реакции, и можно ожидать все более сложных химических симуляций в ближайшем будущем. Когда квантовые симуляции станут более доступными, это позволит предсказать свойства новых молекул и инженеры смогут рассчитывать такие молекулярные конфигурации, которые иначе было бы сложно смоделировать. Таким образом, квантовые компьютеры сыграют важную роль в ускорении разработки новых материалов или лекарственных препаратов.

  • Кибербезопасность. Комбинаторика вот уже больше тысячи лет играет ключевую роль в шифровании. В VIII веке арабский ученый Халиль ибн Ахмад Аль-Фарахиди написал «Книгу тайного языка», где изучал перестановки и сочетания слов. Современное шифрование тоже основано на комбинаторике, а точнее на предпосылке, что комбинаторные вычисления практически невозможны. Но с квантовыми вычислениями взламывать шифры станет намного легче, а это представляет угрозу для безопасности данных. Растет новая индустрия, которая помогает компаниям подготовиться к этой новой уязвимости.

советуем прочитать
Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать
Значимость нетипичных данных
Роджер Мартин,  Шерер Стивен
Как избежать противоречий при управлении творческим процессом
Грэг Брандо,  Кент Лайнбэк,  Линда Хилл,  Эмили Трулав
Незаметный и незаменимый
Владимир Рувинский