Как Китай стал лидером в области ИИ и что ждет его в будущем | Harvard Business Review Russia
Управление инновациями

Как Китай стал лидером в области ИИ и что ждет его в будущем

Дайтянь Ли , Тони У. Тун , Яньгао Сяо
Как Китай стал лидером в области ИИ и что ждет его в будущем
Иллюстрация: IvancoVlad/Getty Images

Двадцать лет назад разрыв между Китаем и США в исследованиях искусственного интеллекта был огромным. В США выпускалось все больше научных работ как в государственном, так и в частном секторе, а Китай занимался производственными проектами с низкой добавочной стоимостью. Но с тех пор Китай совершил рывок — и уже стал глобальным лидером по числу публикаций и патентов в сфере ИИ. Эта тенденция показывает, что Китай может также стать лидером в бизнесе на основе ИИ — например, в распознавании речи и изображений.

Это впечатляющее достижение. Если судить по более раннему исследованию, «Отчету о развитии Китая в сфере ИИ в 2018», над которым работал и один из соавторов этой статьи (Ли), а также, по данным постоянного анализа экономического и социального влияния ИИ-технологий, прогресс страны просто поражает. Доля Китая в мировом объеме научных работ в сфере ИИ выросла с 4,26% (1086) в 1997 году до 27,68% (37343) в 2017-м — больше, чем у любой другой страны мира, включая США; и Китай до сих пор остается на первом месте. Кроме того, КНР стабильно оформляет больше патентов на ИИ, чем любая другая страна. На март 2019 года число китайских ИИ-компаний достигло 1189 — по этому параметру Китай уступает только США, где работает более 2 тыс. ИИ-компаний. Они в большей степени концентрируются на распознавании и синтезе речи, а также распознавании изображений и видео, чем их заокеанские конкуренты.

Эти цифры впечатляют, но нет никаких гарантий, что за ними стоит устойчивое преимущество в ИИ-инновациях и будущее глобальное лидерство. Парадоксально, но условия, которые помогли Китаю наверстать время, могут стать препятствием в его дальнейшем развитии в сфере ИИ, когда он выйдет на передний край инноваций. Чтобы объяснить этот феномен и развить наши прошлые исследования, мы провели интервью с 15 разными игроками сферы ИИ (в том числе с частными компаниями, университетами, научно-исследовательскими институтами и государственными ведомствами) и применили к ситуации идею «циклов догоняющего развития» — концепцию, которая объясняет, почему страны — промышленные лидеры регулярно меняются.

Как Китай всех догнал

Как же Китаю удалось опередить страны, которые работают над ИИ намного дольше, и всего за 20 лет построить научную инфраструктуру мирового уровня?

Это может объяснить концепция «циклов догоняющего развития». Согласно этой теории, иногда могут возникать такие технологические, рыночные и политические изменения и условия, которые ставят лидеров и догоняющих примерно в равное положение. Эти изменения резко сокращают преимущество первых и открывают окна возможностей для вторых. Например, таким изменением стало появление смартфонов на базе Android: оно сгладило преимущество лидера рынка, компании Nokia, и позволило активным новичкам Samsung и Huawei ее потеснить. Кроме того, эта модель помогает понять, когда (и почему) новичкам удается это сделать.

В истории китайского догоняющего роста предлагаемая модель позволяет выделить несколько важных факторов: как природа ИИ-исследований делает технологическое преимущество лидеров неустойчивым, почему огромный рынок Китая идеально подходит для развития ИИ и как дружелюбная регуляторная среда способствует инвестициям в ИИ и принятию технологии.

В сфере ИИ научные результаты не дают устойчивого преимущества. В нескольких важных аспектах ИИ отличается от других технологий. Наука продвигает сферу вперед, но передовые исследования зачастую публикуются в общем доступе, патентные исследования приносят намного меньше результатов, а улучшения возникают в цикле положительной обратной связи: пользователи генерируют данные, а компании анализируют их и улучшают свой продукт.

В отличие, например, от производства компьютеров или фармацевтики, ИИ — это открытая наука. Многие из главных алгоритмов в сфере ИИ находятся в открытом доступе в виде научных работ или протоколов конференций. «Сейчас все с гордостью публикуют результаты своих исследований в сфере ИИ, — сказал нам один из менеджеров стартапа NISE Intelligent Technology, специализирующегося на ИИ-алгоритмах и чипах. — И, как правило, если вы публикуете работу, другие наверняка смогут разобраться с вашим кодом и внедрить его».

Открытость науки ИИ очень удобна для новичков: так им легче догонять старых лидеров, потому что у них появляется больше возможностей быстро преодолеть разрыв в знаниях.

Второе отличие сферы ИИ от традиционных секторов заключается в том, каким образом инновации создают прибыль. Попросту говоря, в ИИ-исследованиях данные и специалисты важнее, чем патенты. В традиционных секторах, например фармацевтике или мобильных коммуникациях, патенты укрепляют положение компаний и защищают потоки прибыли. Но поскольку ИИ — это открытая наука, главным источником конкурентных преимуществ становится способность первыми собрать большую базу данных (и получить конкретные для своей сферы знания и методы применения).

Таким образом, в эпоху ИИ на первый план выходят два главных актива: информатика/наука о данных и инженерные кадры. В Китае и с тем, и с другим все очень хорошо. Благодаря огромному населению у Китая есть преимущества в том, чтобы генерировать и использовать большие данные, а десятилетия работы по развитию технологий и инженерного дела дали стране множество талантливых информатиков и инженеров.

Наконец, сегодня большинство компаний работает над «слабым ИИ», то есть ИИ, который решает узко определенные проблемы, а он в первую очередь требует знания конкретной сферы и созданных пользователями данных. Например, зачастую ИИ нужно настраивать под конкретные бизнес-сценарии. Сначала необходимо создать продукт (например, инструмент распознавания голоса), затем привлечь много пользователей, которые сгенерируют данные. После этого можно будет улучшать свой продукт с помощью данных и машинного обучения. Этот цикл обратной связи ведет к прогрессу.

Активный китайский рынок очень восприимчив к новым ИИ-продуктам и услугам, и китайские компании относительно быстро их создают. Потребители тоже быстро их принимают. Таким образом, вся экосистема способствует быстрому развитию ИИ-технологий и продуктов на их основе.

Рынок Китая способствует принятию и улучшению ИИ. Поскольку для инноваций в ИИ важны большие выборки, очевидно, как гигантский рынок Китая объясняет быстрый темп догоняющего роста. За счет этого масштаба китайский бизнес получает уникальную возможность собирать огромные базы данных. Например, возьмем Didi — китайский аналог Uber и крупнейшую на сегодня райдшеринговую компанию в мире. По словам ее CEO Лю Цина, Didi обрабатывает тысячу запросов на автомобили в секунду, в день это более 70 терабайт данных и 9 млрд построенных маршрутов.

советуем прочитать
Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать