Данные или чутье: в каких случаях можно не тратить время на data science

Данные или чутье: в каких случаях можно не тратить время на data science
|9 июня 2021| Огуз Аджар Дуглас Уэст

Многие считают, что современный менеджмент невозможен без данных. И это мнение нельзя назвать безосновательным. Резкий рост объема доступных данных и развитие data science позволили менеджерам намного больше узнать о своих компаниях. Грамотно используя эти знания, можно принимать более качественные решения по каждому аспекту бизнеса.

Вероятно, именно поэтому многие компании торопятся открыть аналитические отделы, чтобы как можно лучше воспользоваться этим беспрецедентным изобилием данных. Так, согласно недавнему исследованию, 91,9% компаний из списка Fortune 1000 заявили об увеличении инвестиций в аналитику данных.

Нельзя отрицать потенциал больших данных, но являются ли они универсальным ответом на все вопросы? Иными словами, может ли излишнее внимание к данным и их анализу иногда приводить к нежелательным результатам? Мы изучили этот вопрос в своей недавней работе.

Мы ожидали, что данные могут оказаться контрпродуктивны в условиях крайней неопределенности, когда собрать нужные данные очень сложно или вовсе невозможно. Может быть, именно по этой причине 12 издательств не смогли разглядеть потенциал «Гарри Поттера и философского камня», и только в Bloomsbury Publishing согласились издать книгу тиражом в 500 экземпляров. Роман был настолько новаторским, что ни у кого по определению не могло быть данных, чтобы точно оценить его потенциал.

Чтобы проверить эту догадку, мы опросили 122 компании из креативных индустрий (реклама, цифровой маркетинг, издательский бизнес и ПО) об их последних инновационных проектах. Мы выбрали именно креативные индустрии, потому что для них характерны крайне непредсказуемые реакции клиентов и бесконечное разнообразие потенциальных новинок и модификаций. По той же причине мы сконцентрировались на процессе скрининга: как компании решали, какой инновационный проект выбрать для дальнейшей разработки. Эти решения принимаются в условиях высокой неопределенности. У менеджеров почти нет прошлых данных, которые бы позволили им точно предсказать реакцию клиентов, рыночный потенциал, возможности практической реализации и риски. И даже если бы у них были все эти данные, экстраполировать их было бы очень сложно, а иногда это приводило бы к ошибочным выводам.

Полная версия статьи доступна подписчикам
Выберите срок онлайн-подписки:

https://hbr-russia.ru/management/prinyatie-resheniy/873537

2021-06-09T14:02:35.244+03:00

Wed, 09 Jun 2021 11:02:35 GMT

Данные или чутье: в каких случаях можно не тратить время на data science

Когда опыт и интуиция эффективнее анализа данных

Менеджмент / Принятие решений

https://cdn.hbr-russia.ru/image/2021/4g/u0g9l/original-12w9.jpg

Harvard Business Review РоссияHarvard Business Review Россия

Harvard Business Review РоссияHarvard Business Review Россия