Машинное обучение: инструкция для опоздавших | Harvard Business Review Russia
Технологии

Машинное обучение: инструкция для опоздавших

Ави Голдфарб , Аджай Агравал , Джошуа Ганс
Машинное обучение: инструкция для опоздавших
Peter Greenwood

В последнее десятилетие стремительно развивается машинное обучение — один из самых захватывающих разделов искусственного интеллекта. Метод, с помощью которого можно спрогнозировать результат по входным данным, помог таким гигантам, как Amazon, Apple, Facebook и Google, вывести свои продукты на новый уровень. А стартапы подстегнул к запуску новых продуктов и платформ, часть из которых может конкурировать с аналогами от техгигантов.

Возьмем, к примеру, канадскую компанию BenchSci, которая разрабатывает систему, позволяющую ускорить вывод лекарств на рынок. Цель компании — сделать иголки в стоге сена более заметными. BenchSci помогает ученым быстрее найти необходимую информацию во внутренних базах данных фармацевтических фирм и в публикациях научных исследований. Перед тем как отправить потенциальное лекарственное средство на клинические испытания, ученые должны провести эксперименты, на которые уходит много времени и средств. В BenchSci поняли, что можно тратить меньше ресурсов и приходить к лучшему результату, если обращаться к наработкам огромного количества более ранних экспериментов.

Полная версия статьи доступна подписчикам
Вы уже подписаны?
Тогда авторизуйтесь
советуем прочитать