К увольнению готовы | Harvard Business Review Russia
Управление персоналом

К увольнению готовы

Сергей Холкин
К увольнению готовы
Фото: Marc Mueller / Unsplash

Нежелательная текучесть кадров (то есть непрогнозируемые увольнения по собственному желанию) — острая проблема для всех индустрий от торговли до ИТ. На квалифицированных специалистов идет настоящая охота, а полная стоимость замены работника может составлять до 400% от его годового дохода. Особенно дорого обходится потеря недавно нанятых и наиболее эффективных сотрудников, а также работников с высоким потенциалом или уникальным набором знаний.

Обычно между моментом принятия решения об увольнении и увольнением проходит какое-то время (как правило, два-три месяца). В этот период с сотрудником, попавшим в зону риска, еще можно работать, то есть влиять на его решение.

Помочь отследить этот важный момент может предиктивная аналитика, в частности, прогнозирование увольнений работников на основе цифровой самообучающейся модели. Прогнозирование становится возможным с накоплением большого количества данных об однородной группе персонала и использованием технологий машинного обучения.

Задача по прогнозированию увольнений схожа с другими задачами из области предиктивной аналитики — прогнозированием оттока клиентов или неисправностей в работе оборудования. Вот шесть рекомендаций, которые помогут вам начать работу с цифровым прогнозированием увольнений.

Не теряйте данные об уволившихся и собиравшихся уволиться. Важно вести подробные профили таких специалистов (с описанием причин увольнения и событий, им предшествовавших, в том числе на основе интервью с их коллегами), а также профили тех, кто намеревался уволиться, но не уволился.

Сравнение профилей тех, кто уволился, с профилями тех, кто работает, позволяет выявить похожих на них (по своим социально-демографическим и производственным характеристикам) действующих сотрудников и обратить на них пристальное внимание. А профили тех, кто хотел уволиться, но решил остаться, дадут возможность выработать рекомендации для HR по удержанию сотрудников, оказавшихся в зоне риска.

Наладьте систему сбора данных о сотрудниках. Основное сырье для предиктивных моделей — данные. Кроме основных HR-систем, в которых хранятся все данные о сотрудниках (от персональных данных до информации об обучении и вознаграждениях), обратите внимание на источники, не связанные напрямую c HR-функцией. Это могут быть системы управления финансами, хранящие данные о финансовом состоянии бизнес-подразделений, CRM, электронная почта, системы управления доступом в офис. Чем разнообразнее источники, тем точнее предсказательная способность модели.

Для старта аналитики необходимо, чтобы данные из этих систем были доступны за значительный период (два-три года). Принципиально важно и качество данных: собирайте их из месяца в месяц и регулярно проверяйте их консистентность (согласованность, целостность, внутреннюю непротиворечивость). Много непроверенных данных, собранных в системе, не дадут возможности вырабатывать работающие модели.

Сформулируйте гипотезы о причинах и симптомах увольнений. Первоначальные вводные для предиктивной модели можно сформулировать так.

1. Между решением сотрудника об увольнении и самим увольнением обычно проходит два-три месяца.

2. У сотрудников на момент принятия решения об уходе из компании прослеживаются общие черты, паттерны в поведении.

Пример из нашей практики. Крупная международная ИТ-компания была обеспокоена проблемой нежелательных увольнений ключевых специалистов. Первый этап работы по прогнозированию увольнений был построен следующим образом. С нашей помощью HR-менеджеры сформулировали первоначальные гипотезы о причинах и симптомах увольнений (на основе экспертного опыта и результатов интервью с HR и руководителями бизнес-подразделений). Для проверки гипотез все работники компании были поделены на несколько фокус-групп по основным специальностям: разработчики, архитекторы систем, тестировщики, аналитики. Каждую гипотезу проверили по базам уволившихся, тех, кто намеревался уволиться, но не ушел, а также тех, кто подает заявление об уходе. В результате появился список гипотез увольнений, который постоянно дополнялся, уточнялся и перепроверялся. По аналогичной схеме нужно действовать и в других отраслях.

Дифференцируйте симптомы и причины увольнений при формировании гипотез. События, после которых происходит увольнение, — это не всегда их причина. Во многих случаях они лишь симптом подготовки к увольнению. При этом четкое знание симптомов помогает искать причины.

HR-специалисты одного из банков обратили внимание на исследование аналитической организации, в котором утверждалось, что после летнего отпуска у многих сотрудников появляется желание сменить место работы. (Причем речь шла, о «белых» компаниях, где нет необходимости перед увольнением отгуливать отпуск, чтобы потом не было проблем с получением отпускных.)

Однако анализ данных по увольнениям показал, что работник намеревался уволиться, но пришел к этому решению до отпуска, либо брал отпуск, чтобы посвятить время обучению и поиску новой работы. Дополнительные интервью показали, что во многих случаях взятие отпусков было связано с подготовкой к увольнению — то есть являлось его симптомом. Выявление этой закономерности позволило сформулировать новую гипотезу: перед увольнением сотрудники чаще ходят в отпуск и продолжительность отпуска дольше.

Другой пример. FMCG-компания с широкой региональной сетью сталкивалась с нежелательными увольнениями менеджеров по привлечению поставщиков. Сотрудники уходили к конкурентам без видимых причин на аналогичные зарплаты.

Ответ дал анализ данных по статистике увольнений. Оказалось, что большинство увольнений приходилось на сотрудников небольших офисов в регионах России (в которых работает не больше четырех человек), а кураторы продаж работали удаленно в региональных центрах.

Это было симптомом увольнений. Причина же состояла в том, что эти менеджеры по продажам во многом были предоставлены сами себе, вынуждены были решать многочисленные проблемы без оперативного общения с руководителем, часто не имея необходимых ресурсов. План продаж устанавливался в зависимости от численности населения на определенной территории, но без учета плотности населения и количества ресурсов, необходимых для ее охвата. Подобное непонимание географических особенностей и приводило к нежелательной текучести.

В компании изменили нормативы выработки в отдельных регионах, установили новые регламенты коммуникации с руководством и функциональными службами, изменили структуру региональных офисов, и нежелательная текучесть заметно сократилась.

Выделите конкретные факторы нежелательных увольнений и их опасные сочетания. Фактор — характеристика, которая точно связана с увольнением и может выступать в качестве ее причины.

советуем прочитать
Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать