5 принципов понимания аналитики | Harvard Business Review Russia
Прочее

5 принципов понимания аналитики

Томас Дейвенпорт
5 принципов понимания аналитики

Я убежден, что управленцы в наше время недостаточно используют данные и аналитику. И дело не в их квалификации, а в элементарном недостатке понимания тех возможностей, которые эти инструменты предоставляют. И это при том, что сейчас всем доступны огромные массивы информации, компьютерные мощности и специализированное ПО. Таким образом, назрела реальная необходимость в дополнительном образовании по этой теме. К сожалению, видов обучения для менеджеров, которые не специализируются на аналитике, не так уж и много. Онлайн-лекции и традиционные академические курсы в основном концентрируются на методах. Существует великое множество образовательных программ, обучающих управленцев, не связанных с областью финансов, бухгалтерскому учету и другим финансовым дисциплинам. В то же время я не знаю ни одной подобной программы, посвященной аналитике, нацеленной на неспециалистов в этой области.

Я разрабатывал учебные программы и преподавал аналитику менеджерам в Бэбсоне, Гарварде, Массачусетском технологическом институте, Бостонском университете и Ирландском национальном университете в Корке, поэтому я знаю, в чем должно заключаться подобное обучение. Если вы ищете подходящую программу такого рода, убедитесь, что она содержит компоненты, которые я перечислю ниже. Или изучите специализированную литературу по этим направлениям.

Определение и формулировка аналитической проблемы. Грамотный количественный анализ требует сначала установить суть проблемы, а затем приступить к работе над ее решением. В анализе возможных решений этот этап называется формулировкой. Это один из важнейших элементов правильного процесса принятия решений. К этому первоначальному шагу могут привести разные условия — например, простое любопытство (здравый смысл менеджера или наблюдение за событиями), предыдущий опыт работы или потребность в каком-либо решении или действии.

На этой ранней стадии настоящая аналитика еще не применяется. Понимание того, что для дальнейшей работы может потребоваться некий анализ, может основываться на догадках или интуиции. Критерии доказательств на этом этапе довольно скромные. Суть в том, что весь смысл количественного анализа как раз и состоит в том, чтобы в конце концов проверить ваши догадки с помощью фактических данных. (И в этом заключается главное отличие людей, мыслящих аналитически, от прочих — мы проверяем наши догадки анализом и конкретными фактами).

Читайте материал по теме: Данные не говорят сами за себя

На этапе формулировки управленцам нужно сосредоточиться на систематическом установлении и оценке проблемы. Также следует принять во внимание возможные альтернативные формулировки. Может быть, потребуется обсудить этот вопрос с аналитиками, которые понимают, как их рассматривать. (Если вы хотите больше узнать о формулировке аналитических проблем, читайте главу в моей книге «О чем говорят цифры».)

Сотрудничество с аналитиками. Что касается самих аналитиков, то управленцам крайне важно наладить с ними тесные рабочие взаимоотношения. Вы понимаете проблему на уровне бизнеса, в то время как ваш аналитик знает, как собрать нужные сведения и проанализировать их. Чтобы эти отношения работали, обе стороны должны пойти друг другу навстречу. Вам как менеджеру, который не специализируется в вопросах аналитики, нужно помочь ему в полной мере понять проблему. Например, можно на несколько дней привлечь его к работе в той части бизнеса, которая имеет отношение к рассматриваемой проблеме. Ваш аналитик должен уметь общаться с вами на языке бизнеса, принимать активное участие в решении вашего вопроса и работать над ним до тех пор, пока результат вас не удовлетворит. Да, он, может быть, не слишком умело взаимодействует с начальством (да и с другими людьми тоже), а вам, возможно, не по себе от количественного анализа. И, тем не менее, вам нужно найти общий язык.

Понимание различных видов данных и их значения. В последнее время много говорят о больших данных и о том, как они важны для бизнеса. Однако менеджеры в массе своей не понимают разницы между большими и обычными «старыми добрыми» данными и называют термином «большие данные» все подряд. На самом деле не так уж и важно, как их называть, важно знать, в чем состоит различие между ними.

Читайте материал по теме: Научитесь думать как аналитик

советуем прочитать
Войдите на сайт, чтобы читать полную версию статьи
советуем прочитать
Идеалы и деньги
Елена Евграфова