Самая загадочная работа XXI века

Самая загадочная работа XXI века

|14 января 2019|Яэль Гартен

В 2012 году HBR назвал работу специалистов по обработке и анализу данных «самой привлекательной работой XXI века». Можно сказать, что она является и самой загадочной. Чтобы взять на имеющиеся вакансии подходящих людей, важно различать типы специалистов по работе с данными. Конечно, у них существует множество отличительных особенностей, поэтому любые попытки классифицировать специалистов по анализу данных ведут к излишнему упрощению. Тем не менее, мне кажется полезным провести различия, опираясь на результаты их труда. Первый тип специалистов создает рекомендации по стратегическому управлению и производству, которыми пользуются люди. Это специалисты в области решений. Второй тип создает модели, данные для обучения и алгоритмы, которые используют машины. Это специалисты в области моделей.

  1. Анализ и обработка данных для людей. Результатами труда специалистов по данным пользуются лица, ответственные за принятие решений, например, руководители, менеджеры по продукту, дизайнеры или врачи. Им необходимо делать выводы на основе данных, чтобы принимать решения о том, какой контент лицензировать, с какими потенциальными покупателями работать, какое лекарство не вызовет аллергическую реакцию, какой дизайн веб-страницы повысит вовлеченность или число покупок, какая рекламная рассылка принесет большую прибыль или какой элемент пользовательского опыта требует доработки. Специалисты этого типа разрабатывают и внедряют измерительные инструменты, проводят и анализируют эксперименты, создают панели индикаторов, устанавливают причинные связи и дают рекомендации, опираясь на модели и измерения.

  2. Анализ и обработка данных для машин. Результаты труда специалистов (данные для обучения, модели и алгоритмы) используют компьютеры. Например, это могут быть рекомендательные системы, подсказывающие, какая рубашка понравится клиенту или какое лекарство выписать пациенту, в основе которых лежит функция, минимизирующая количество кликов или случаев повторной госпитализации. В зависимости от навыков специалистов этого типа их наработки могут или применяться напрямую, или служить прототипами, которые реализуют, оптимизируют и масштабируют разработчики ПО.

Специалисты по анализу данных широкого профиля существуют, но их довольно трудно найти. В большинстве организаций имеет смысл специализироваться на одном из типов работы. Впрочем, эти сотрудники отличаются любопытством и преуспевают, когда имеют возможность попробовать себя в разных сферах. Предоставив специалистам по данным такую возможность, вы принесете пользу и им, и компании. (В справке ниже можно прочитать подробнее о том, что два типа специалистов по анализу данных отличаются не только навыками и выполняемой работой, но и партнерами по работе и критериями успеха).

СПЕЦИАЛИСТЫ В ОБЛАСТИ РЕШЕНИЙ И СПЕЦИАЛИСТЫ В ОБЛАСТИ МОДЕЛЕЙ

Кто пользуется результатами труда
 
Специалисты в области решений: люди.
 
Специалисты в области моделей: машины.
 
Что является результатом труда
 
Специалисты в области решений: панели индикаторов; презентации; памятки; новые метрики; модели прогнозирования, помогающие принимать решения; анализ возможностей, помогающий определить, во что инвестировать, или установить приоритеты; отчеты о результатах экспериментов и рекомендации.
 
Специалисты в области моделей: модели; данные для обучения; алгоритмы.
 
Каковы критерии успеха
 
Специалисты в области решений: более совершенный процесс принятия решений в организации.
 
Специалисты в области моделей: усовершенствованный продукт или бизнес в результате разработанного и внедренного кода.
 
Примеры
 
Специалисты в области решений: решения о том, какой контент лицензировать, с какими потенциальными покупателями работать, какое лекарство не вызовет аллергическую реакцию, какой дизайн веб-страницы повысит вовлеченность или число покупок, какая рекламная рассылка принесет большую прибыль или какой элемент пользовательского опыта требует доработки.
 
Специалисты в области моделей: рекомендательные системы, подсказывающие, какая рубашка понравится клиенту или какое лекарство выписать пациенту, в основе которых лежит функция, минимизирующая количество кликов или случаев повторной госпитализации.
 
Какие навыки требуются
 
Специалисты в области решений: статистический анализ, проведение экспериментов, аналитическое мышление, навыки коммуникации и сотрудничества для работы с техническими и нетехническими партнерами, знание языков сценариев и запросов (например, Python, R, SQL), также желательно образование в области информатики.
 
Специалисты в области моделей: информатика, машинное обучение, навыки написания кода, навыки коммуникации для работы с техническими и нетехническими партнерами.
 
Кто их основные партнеры по работе


Специалисты в области решений: лица, ответственные за принятие решений (руководители, бизнес-лидеры, менеджеры по продукту), специалисты по инжинирингу данных, разработчики ПО, отвечающие за приложения, генерирующие данные.
 
Специалисты в области моделей: back-end разработчики, менеджеры по продукту (чтобы определить, для чего оптимизировать тот или иной продукт), другие специалисты в области моделей (чтобы делиться методами работы), специалисты в области решений (для обсуждения необходимых свойств и используемых баз данных).

Более детальный взгляд на работу с данными

При более масштабной и сложной работе с данными требуются более узкие специалисты. Ниже представлены пять основных сфер, связанных с обработкой и анализом данных. В маленьких организациях один человек может отвечать сразу за несколько из них. В компаниях побольше в каждой сфере может работать один или несколько человек. В крупных организациях за каждую сферу отвечает отдельная команда. Эти направления включают создание, хранение и использование данных и дополняют функции специалистов, описанных выше (специалистов в области решений и моделей).

  • Инфраструктура данных: получение и обработка данных, обеспечение их доступности, операции с данными, создание рабочей среды для специалистов по данным, например, кластеров Kafka и Hadoop.

  • Инжиниринг данных: определение схем данных, необходимых для измерения и создания моделей, очистка и агрегирование данных, ETL, управление массивами данных.

  • Качество данных и управление данными: создание инструментов, процессов, инструкций, обеспечивающих корректность данных, их отслеживание, документирование и стандартизацию. Сюда относятся инструменты для отслеживания происхождения и преобразования данных и обеспечения безопасности данных.

  • Инжиниринг для анализа данных: помощь специалистам по анализу данных за счет увеличения масштаба исследований с применением аналитических приложений для внутреннего использования (например, библиотеки аналитического ПО, рабочих процессов и аналитических микросервисов).

  • Управление продуктами обработки и анализа данных: создание продуктов, которые могут использовать внутренние клиенты в своих рабочих процессах, чтобы интегрировать находки специалистов по данным. Примеры: портал для публикации результатов A/B тестов, инструмент анализа ошибок, панель индикаторов для самодиагностики причин изменений в показателях или работе модели.

Кого нанимать

Полная версия статьи доступна подписчикам
Выберите срок онлайн-подписки:

https://hbr-russia.ru/innovatsii/upravlenie-innovatsiyami/791402

2019-01-14T22:55:53.475+03:00

Tue, 15 Jan 2019 11:24:23 GMT

Самая загадочная работа XXI века

Что нужно знать о специалистах по обработке и анализу данных

Инновации / Управление инновациями

https://cdn.hbr-russia.ru/image/2019/e/1d3xvt/original-1rn9.jpg

Harvard Business Review – РоссияHarvard Business Review – Россия

Harvard Business Review – РоссияHarvard Business Review – Россия